INTRODUCTION TO DESIGN (±¸Á¶)¼³°èÀÇ ´ëÇÑ ¼Ò°³


Summary ¿ä¾à

1.1 What is design? - Inputs, design process, scope of course.
1.2 Design philosophy - permissible stress design, load factor method, limit state design.


1.1 What is design? ¼³°è¶õ ¹«¾ùÀΰ¡?

The task of the structural engineer is to design a structure which satisfies the needs of the client and the user. Specifically the structure should be safe, economical to build and maintain, and aesthetically pleasing. But what does the design process involve?

±¸Á¶±â¼úÀÚ°¡ ÇؾßÇÒ ÀÏÀº °ÇÃàÁÖ¿Í »ç¿ëÀÚÀÇ ¿ä±¸»çÇ×µéÀ» ¸¸Á·½ÃÅ°´Â ±¸Á¶¹°À» ¼³°èÇÏ´Â °ÍÀÌ´Ù. ƯÈ÷ ±× ±¸Á¶¹°Àº ¾ÈÀüÇÏ°í, ½Ã°ø°ú °ü¸®À¯Áö¿¡ °æÁ¦ÀûÀ̸ç, ¹ÌÀûÀ¸·Î ¸¸Á·À» ÁÖ¾î¾ß ÇÑ´Ù. ±×·¯¸é ¼³°è°úÁ¤Àº ¹«¾ùÀ» Æ÷ÇÔÇϴ°¡?

Design is a word that means different things to different people. In dictionaries the word is described as a mental plan, preliminary sketch, pattern, construction, plot or invention. Even amongst those closely involved with the built environment there are considerable differences in interpretation. Architects, for example, may interpret design as being the production of drawings and models to show what a new building will actually look like. To civil and structural engineers however, design is taken to mean the entire planning process for a new building structure, bridge, tunnel, road etc., from outline concepts and feasibility studies through mathematical calculations to working drawings which could show every last nut and bolt in the project. Together with the drawings there will be bills of quantities, a specification, and a Contract, which will form the necessary legal and organisation framework within which a contractor, under the supervision of engineers and architects, can construct the scheme.

¼³°è¶ó´Â ¸»Àº °¢±â ´Ù¸¥ »ç¶÷¿¡°Ô ¼­·Î ´Ù¸¥ °ÍÀ» ÀǹÌÇÏ´Â ´Ü¾îÀÌ´Ù. »çÀü »ó¿¡´Â ¼³°è¶õ ´Ü¾î´Â ÀÏÂ÷ÀûÀ¸·Î´Â ½ºÄÉÄ¡, ÆÐÅÏ, ½Ã°ø, ±¸¼ºÀ̳ª ¹ß¸í°ú °°Àº Á¤½Å»óÀÇ °èȹÀ¸·Î ±â¼úµÇ¾î ÀÖ´Ù. ½ÉÁö¾î °Ç¼³È¯°æ°ú ¾ÆÁÖ °¡±õ°Ô ¿¬°üµÈ ºÎºÐµé¿¡µµ Á¶Â÷µµ ±× ¹ø¿ª¿¡ À־ »ó´çÇÑ Â÷ÀÌ°¡ ÀÖ´Ù. ¿¹ÄÁµ¥, °ÇÃà°¡´Â ¼³°è¶õ ¸»À» »õ·Î¿î °Ç¹°ÀÌ ½ÇÁ¦·Î º¸¿©Áö´Â °ÍÀ» °¡½ÃÈ­½ÃÅ°´Â µµ¸éÀ̳ª ¸ðµ¨À» ¸¸µå´Â °ÍÀ¸·Î Çؼ®ÇÒ °ÍÀÌ´Ù. ±×·¯³ª ½Ã°ø±â¼úÀÚ³ª ±¸Á¶±â¼úÀÚ¿¡°Ô À־´Â »õ·Î¿î ±¸Á¶¹°, ±³·®, ÅͳÎ, µµ·Î µîÀÇ ´ë·«ÀûÀÎ °³³äÀ̳ª ¼öÇÐÀû °è»êÀ» ÅëÇÑ Å¸´ç¼º Á¶»ç¿¡¼­ºÎÅÍ ±× ÇÁ·ÎÁ§Æ®ÀÇ ¸ðµç ÃÖÈÄÀÇ ³ÊÆ®¿Í º¼Æ®¸¦ º¸¿©ÁÖ´Â ½Ã°øµµ¿¡ À̸£±â±îÁöÀÇ ÀüüÀûÀÎ °èȹ°úÁ¤À» ÀǹÌÇÑ´Ù. µµ¸é°ú °°ÀÌ ±â¼úÀÚ³ª °ÇÃà°¡ÀÇ °ü¸®ÇÏ¿¡ µµ±ÞÀÚ°¡ °èȹÀ» ¼¼¿ì´Â ÇÊ¿äÇÑ ¹ý·ü»óÀÇ ±×¸®°í Á¶Á÷»óÀÇ Ã¼°è¸¦ ±¸¼ºÇÏ´Â ¼ö·®°è»ê¼­, ±ÔÁØ, ±×¸®°í °è¾à¼­¸¦ ÀǹÌÇÒ ¼öµµ ÀÖ´Ù.

There are many inputs into the engineering design process as illustrated by Figure 1.1 including

´ÙÀ½°ú °°ÀÌ ±×¸²1.1¿¡¼­ º¸¿©ÁöµíÀÌ °øÇÐÀûÀÎ ¼³°è°úÁ¤¿¡ µé¾î°¡´Â ¸¹Àº ÀÎÀÚµéÀÌ ÀÖ´Ù.


(a) Client brief °ÇÃàÁÖÀÇ ¿ä±¸»çÇ×
(b) Experience °æÇè
(c) Imagination »ó»ó·Â
(d) A site investigation ÇöÀå Á¶»ç
(e) Model and laboratory tests ¸ðµ¨À» ÅëÇØ ±×¸®°í ½ÇÇè½Ç¿¡¼­ ÀÌ·ç¾îÁö´Â Å×½ºÆ®
(f) Economic factors °æÁ¦Àû ¿äÀεé
(g) Environmental factors ȯ°æÀû ¿äÀεé


Figure 1.1 - Inputs into the design process ¼³°è°úÁ¤¿¡ Æ÷ÇԵǴ ÀÎÀÚµé

The starting point for the designer is normally a conceptual brief from the client, who may be a private developer or perhaps a government body. The conceptual brief may simply consist of some sketches prepared by the client or perhaps a detailed set of architects drawings.

¼³°èÀÚÀÇ Ãâ¹ßÁ¡Àº ÀϹÝÀûÀ¸·Î ¹Î°£°³¹ß¾÷ÀÚ³ª ¾Æ¸¶µµ Á¤ºÎ±â°üÀÌ µÉ ¼öµµ ÀÖ´Â °ÇÃàÁַκÎÅÍÀÇ °³³äÀûÀÎ ¿ä±¸»çÇ×µéÀÌ´Ù. °³³äÀûÀÎ ¿ä±¸»çÇ×Àº ´Ü¼øÈ÷ °ÇÃàÁÖ¿¡ ÀÇÇØ ÁغñµÈ ¾à°£ÀÇ ½ºÄÉÄ¡³ª ȤÀº °ÇÃ൵¸éµé·Î ´Ü¼øÈ÷ ±¸¼ºµÈ´Ù.

Experience is crucially important, and a client will always demand that the firm he is employing to do the design has previous experience designing similar structures.

°æÇèÀº ¸Å¿ì Áß¿äÇϸç, °ÇÃàÁÖ´Â Ç×»ó ¼³°è¸¦ ÇϱâÀ§ÇØ °í¿ëÇÏ°í Àִ ȸ»ç°¡ ÀÚ½ÅÀÌ »ý°¢ÇÏ°í ÀÖ´Â ±¸Á¶¹°°ú À¯»çÇÑ ±¸Á¶¹°µéÀ» ÀÌÀü¿¡ °æÇèÇØ º» ÀûÀÌ ÀÖ´ÂÁö¸¦ ¿ä±¸Çϱ⠸¶·ÃÀÌ´Ù.

Although imagination is thought by some to be entirely the domain of the architect, this is not so. For engineers and technicians an imagination of how elements of structure inter-relate in three dimensions is essential, as is an appreciation of the loadings to which structures might be subject in certain circumstances. In addition, imaginative solutions to engineering problems are often required to save money, time, or to improve safety or quality.

ºñ·Ï »ó»ó·ÂÀÌ ÀϺΠ»ç¶÷µé¿¡ ÀÇÇØ ÀüÀûÀ¸·Î °ÇÃà°¡ÀÇ ¿µ¿ªÀ̶ó°í »ý°¢µÇ¾îÁúÁö¶óµµ, ½ÇÀº ±×·¸Áö ¾Ê´Ù. °øÇÐÀÚ³ª ±â¼úÀڵ鿡°Ô À־ ±¸Á¶¹°ÀÇ ±¸¼º¿ä¼ÒµéÀÌ ¾î¶»°Ô »ïÂ÷¿øÀûÀ¸·Î »óÈ£°ü°è¸¦ °¡Áö´Â°¡¿¡ ´ëÇÑ »ó»ó·ÂÀº ÇʼöÀûÀÌ´Ù. ±¸Á¶¹°ÀÌ ¾î¶² ÀÏÁ¤ÇÑ È¯°æ ¾Æ·¡¼­ ÁÖ¾îÁö´Â ÇÏÁßÀ» Æò°¡ÇÏ´Â °Íµµ ¸¶Âù°¡ÁöÀÌ´Ù. °Ô´Ù°¡, °øÇÐÀû ¹®Á¦¿¡ ´ëÇÑ »ó»ó·ÂÀÌ Ç³ºÎÇÑ ÇØ°á¾ÈÀº Á¾Á¾ µ·, ½Ã°£À» Àý¾àÇϰųª ¾ÈÀü¼ºÀ̳ª Ç°ÁúÀ» Çâ»ó½ÃÅ°±â À§ÇØ ¿ä±¸µÇ¾îÁø´Ù.

A site investigation is essential to determine the strength and other characteristics of the ground on which the structure will be founded. If the structure is unusual in any way, or subject to unusual loadings, model or laboratory tests may also be used to help determine how the structure will behave.

ÇöÀåÁ¶»ç´Â ±¸Á¶¹°ÀÌ ¼­°ÔµÉ Áö¹ÝÀÇ °­µµ¿Í ´Ù¸¥ Ư¼ºµéÀ» °áÁ¤Çϱâ À§Çؼ­ ÇʼöÀûÀÎ ºÎºÐÀÌ´Ù. ¾î¶°ÇÑ ÀÌÀ¯·ÎÇؼ­ ±¸Á¶¹°ÀÌ Æ¯¼öÇÑ °ÍÀ̰ųª Ư¼öÇÑ ÇÏÁßÀ» ¹Þ´Â °æ¿ì¶ó¸é, ¸ðµ¨À» ÅëÇϰųª ½ÇÇè½Ç¿¡¼­ÀÇ Å×½ºÆ®µµ ±¸Á¶¹°ÀÌ ¾î¶»°Ô °Åµ¿ÇÒ °ÍÀÎÁö¸¦ °áÁ¤Çϴµ¥ µµ¿òÀ» Áֱ⠶§¹®¿¡ »ç¿ëµÇ¾îÁø´Ù.

In today's economic climate a structural designer must be constantly aware of the economic implications of his or her design. On the one hand design should aim to achieve economy of materials in the structure, but over-refinement can lead to an excessive number of different sizes and components in the structure, and labour costs will rise. In addition the actual cost of the designers time should not be excessive, or this will undermine the employers competitiveness. The idea is to produce a workable design achieving reasonable economy of materials, while keeping manufacturing and construction costs down, and avoiding unnecessary design and research expenditure.

¿À´Ã³¯ÀÇ °æÁ¦ÀûÀΠȯ°æ¿¡¼­ ±¸Á¶±â¼úÀÚ´Â ÀÚ±âÀÚ½ÅÀÇ ¼³°è°¡ Áö´Ï´Â °æÁ¦ÀûÀÎ ÇÔÀǸ¦ Ç×»ó ÀǽÄÇÏ°í ÀÖ¾î¾ß¸¸ ÇÑ´Ù. ¹Ý¸é¿¡ ¼³°è´Â ±¸Á¶¹°¿¡¼­ Àç·áÀÇ °æÁ¦¼ºÀ» ȹµæÇϱâ À§ÇØ ÃÊÁ¡ÀÌ ¸ÂÃß¾îÁ®¾ß ÇÏÁö¸¸, Áö³ªÄ¡°Ô Á¤Á¦µÈ ¼³°è¸¦ ÇÒ °æ¿ì ±¸Á¶¹°¿¡¼­ Áö³ªÄ¡°Ô ¸¹Àº ±Ô°Ý°ú ºÎÀçµéÀ» ÇÊ¿ä·Î ÇÏ°Ô µÇ¾î ³ë¹«ºñ°¡ Ä¿Áú °ÍÀÌ´Ù. ¼³°èÀÚÀÇ ½ÇÁ¦ ºñ¿ë»Ó¸¸¾Æ´Ï¶ó ½Ã°£µµ Áö³ªÄ¡°Ô ¸¹À¸¸é ¾ÈµÇ¸ç, ±×·²°æ¿ì °æÀZ¿¡¼­ µÚ¶³¾îÁö±â ¸¶·ÃÀÌ´Ù. °á·ÐÀº Á¦ÀÛºñ¿ë°ú ½Ã°øºñ¿ëÀ» ÁÙÀÌ°í, ºÒÇÊ¿äÇÑ ¼³°è¿Í ¿¬±¸³ë·ÂÀ» ÇÇÇϸ鼭µµ ÇÕ¸®ÀûÀÎ Àç·á»óÀÇ °æÁ¦¼ºÀ» Áö´Ñ ½Ã°ø°¡´ÉÇÑ ¼³°è¸¦ ¸¸µé¾î³»´Â °ÍÀÌ´Ù.

Designers must also understand how the structure will fit into the environment for which it is designed. Today many proposals for engineering structures stand or fall on this basis, so it is part of the designers job to try to anticipate and reconcile the environmental priorities of the public and government.

¼³°èÀÚ´Â ¶ÇÇÑ ±¸Á¶¹°ÀÌ ±× ¾È¿¡¼­ ¼³°èµÇ¾îÁö´Â ȯ°æ¿¡ ¾î¶»°Ô Àß µé¾î¸Â´ÂÁö¸¦ ÀÌÇØÇؾ߸¸ ÇÑ´Ù. ¿À´Ã³¯ ¸¹Àº °øÇÐÀû ±¸Á¶¹°µé¿¡ ´ëÇÑ Á¦¾ÈµéÀÌ ÀÌ·± »çÇ×ÀÌ ±Ù°Å¸¦ µÎ°í ¼ö¶ôµÇ±âµµ ÇÏ°í °ÅÀýµÇ±âµµ ÇÑ´Ù. µû¶ó¼­ °ø°ø ´ëÁß°ú Á¤ºÎÀÇ È¯°æ»óÀÇ ¿ì¼±±ÇÀ» ¿¹ÃøÇÏ°í ÀÌ¿¡ ŸÇùÁ¡À» ã¾Æ³»µµ·Ï ³ë·ÂÇÏ´Â °ÍÀÌ ¼³°èÀÚÀÇ ¾÷¹«ÀÇ ÇÑ ºÎºÐÀÌ´Ù.

The engineering design process can often be divided into two stages:
(1) a feasibility study involving a comparison of the alternative forms of structure, and selection of the most suitable type and
(2) a detailed design of the chosen structure.

°øÇлóÀÇ ¼³°è°úÁ¤Àº Á¾Á¾ Å©°Ô µÎ ´Ü°è·Î ³ª´µ¾îÁú ¼ö ÀÖ´Ù :
(1) ±¸Á¶¹°ÀÇ ´Ù¸¥ ´ë¾Èµé°úÀÇ ºñ±³¸¦ ÅëÇÑ Å¸´ç¼ºÁ¶»ç¿Í ±×¿¡ µû¸¥ °¡Àå ÀûÇÕÇÑ À¯ÇüÀÇ ¼±ÅÃ
(2) ¼±ÅÃµÈ ±¸Á¶¹°¿¡ ´ëÇÑ »ó¼¼¼³°è

The success of stage 1, the conceptual design, relies to a large extent on engineering judgement and instinct, both of which are the outcome of many years experience of designing structures. Stage 2, the detailed structural design, also requires these attributes but is usually more dependent upon a thorough understanding of the codes of practice for structural design, eg. BS8110 and BS5950. These documents are based on the amassed experience of many generations of engineers, and the results of research. They help to ensure safety and economy of construction, and that mistakes are not repeated. For instance, after the infamous disaster at the Ronan Point block of flats in Newham, London, when a gas explosion caused a serious partial collapse, research work was carried out, and codes of practice were amended so that such structures could survive such a gas explosion, with damage being confined to one level.

1´Ü°èÀÎ °³³äÀû ¼³°èÀÇ ¼º°øÀº °øÇÐÀû ÆÇ´Ü°ú º»´É¿¡ ¸Å¿ì Å©°Ô ÀÇÁ¸Çϴµ¥, ÀÌ µÑ ¸ðµÎ ±¸Á¶¹°À» ¼³°èÇÑ ¼ö½Ê³â°£ÀÇ °æÇèÀÇ »êÃâ¹°ÀÌ´Ù. 2´Ü°èÀÎ »ó¼¼ ±¸Á¶¼³°èµµ ¶ÇÇÑ ÀÌ·± ¸éµéÀ» ¿ä±¸ÇÏÁö¸¸, ÀϹÝÀûÀ¸·Î BS8110À̳ª BS5950°ú °°Àº ±¸Á¶¼³°è¿¡ ´ëÇÑ ½Ç¹« ±ÔÁØ¿¡ ´ëÇÑ ±íÀÌÀÖ´Â ÀÌÇØ¿¡ ´õ¿í ÀÇÁ¸ÇÑ´Ù. ÀÌ·± ¹®¼­µéÀº ¼ö¼¼´ë¿¡ °ÉÄ£ ±â¼úÀÚµéÀÇ ÃàÀûµÈ °æÇè¿¡ ±âÃÊÇÏ°í ÀÖÀ¸¸ç, ¿¬±¸ÀÇ °á°ú¹°µéÀÌ´Ù. ¶ÇÇÑ ½Ã°øÀÇ ¾ÈÀü¼º°ú °æÁ¦¼ºÀ» È®½ÅÇϴµ¥ µµ¿òÀ» ÁÖ¸ç, ½Ç¼öµéÀÌ ¹Ýº¹µÇÁö ¾Ê°Ô µÈ´Ù. ¿¹¸¦ µé¸é, ·±´ø ´ºÇÜ¿¡¼­ ÀÖ¾ú´ø °¡½ºÆø¹ßÀÌ ½É°¢ÇÑ ºÎºÐÀûÀÎ ºØ±«¸¦ ¾ß±âÇÑ Ronan Point ºí·°ÀÇ ¾ÆÆÄÆ®¿¡¼­ ÀϾ ¾Ç¸í³ôÀº ÀçÇØ ÀÌÈÄ¿¡ ¿¬±¸ÀÛ¾÷ÀÌ ¼öÇàµÇ¾ú°í, ½Ç¹«±ÔÁصéÀÌ ±¸Á¶¹°ÀÌ ±×·¯ÇÑ °¡½ºÆø¹ß ¾Æ·¡¼­µµ ºØ±«µÇÁö ¾Ê°í ¼Õ»óÀÌ ÇÑ Ãþ¿¡¸¸ ±¹Çѵǵµ·Ï Àç¼öÁ¤µÇ¾ú´Ù.

1.2 Design Philosophy ¼³°èöÇÐ

Table 1.1 illustrates some risk factors that are associated with activities in which people engage. It can be seen that some degree of risk is associated with air and road travel. However people normally accept that the benefits of mobility outweigh the risks. Staying in buildings, however, has always been regarded as fairly safe. The risk of death or injury due to structural failure is extremely low, but as we spend most of our life in buildings this is perhaps just as well.

Ç¥ 1.1Àº Àΰ£ÀÌ ¿µÀ§ÇÏ´Â ÇàÀ§¿¡ °ü·ÃµÈ ÀÏÁ¾ÀÇ À§Çè¿äÀÎÀ» º¸¿©ÁØ´Ù. ¾î´À Á¤µµÀÇ À§ÇèÀÌ Ç×°ø¿©Çà°ú µµ·Î¿©Çà¿¡ °ü·ÃµÇ¾î ÀÖÀ½ÀÌ º¸¿©Áø´Ù. ±×·¯³ª »ç¶÷µéÀº Åë»óÀûÀ¸·Î ¿î¼Û±â´ÉÀÇ ÀÌÁ¡ÀÌ À§Çè¿äÀÎÀ» ´É°¡ÇÑ´Ù°í ÀÎÁ¤ÇÑ´Ù. ±×·¯³ª °Ç¹°¿¡ ¸Ó¹°·¯ÀÖ´Â °ÍÀº Ç×»ó ¸Å¿ì ¾ÈÀüÇÏ´Ù°í ¿©°ÜÁ®¿Ô´Ù. ±¸Á¶¹°ÀÇ Æı«·Î ÀÎÇÑ Á×À½À̳ª ºÎ»óÀÇ À§ÇèÀº ¸Å¿ì ³·Áö¸¸, ¿ì¸®°¡ ¿ì¸® ÀλýÀÇ ´ëºÎºÐÀÇ ½Ã°£À» °Ç¹°¿¡¼­ º¸³»±â ¶§¹®¿¡ ÀÌ·± °æ¿ìµµ ¾Æ¸¶ ¸¶Âù°¡ÁöÀÌ´Ù.

Mountaineering (International)    µî»ê(±¹Á¦Àû)   2700
Air Travel (International)    Ç×°ø¿©Çà(±¹Á¦Àû)   120
Deep Water Trawling    ½ÉÇØÆ®·Ñ¾î¾÷  59
Car Travel    ÀÚµ¿Â÷ ¿©Çà   56
Coal Mining   Åº±¤ÀÛ¾÷   21
Construction Sites    °Ç¼³ÇöÀå   8
Manufacturing    Á¦Á¶¾÷   2
Accidents at Home    Áý¾È»ç°í   2
Fire at Home    Áý¾ÈÈ­Àç   0.1
Structural Failures    ±¸Á¶¹° ºØ±«   0.002

Table 1.1 - Comparative Death Risk per 108 Persons Exposed
Ç¥ 1.1 - ³ëÃâµÈ 108¸íÀÇ »ç¶÷µé¿¡ ´ëÇÑ ºñ±³ »ç¸Á À§Çè

As far as the design of structures for safety is concerned, it is seen as the process of ensuring that stresses due to loading at all critical points in a structure have a very low chance of exceeding the strength of materials used at these critical points. Figure 1.2 illustrates this in statistical terms.

¾ÈÀü¿¡ ´ëÇؼ­ ±¸Á¶¼³°è°¡ °ü°èµÇ´Â ÇÑ, ±¸Á¶¼³°è´Â ±¸Á¶¹°¿¡ ÀÖ´Â ¸ðµç À§ÇèºÎÀ§µé(critical pointsÀÇ ¹ø¿ª)¿¡¼­ ¹Þ´Â ÇÏÁßÀ¸·Î ÀÎÇÑ ÀÀ·ÂÀÌ ±× ºÎºÐµé¿¡ »ç¿ëµÈ Àç·áÀÇ °­µµ¸¦ ÃÊ°úÇÒ È®·üÀÌ ¸Å¿ì ³·¾Æ¾ß¸¸ ÇÑ´Ù. ±×¸² 1.2´Â Åë°èÀûÀÎ Ãø¸é¿¡¼­ ÀÌ·± Á¡À» ³ªÅ¸³½´Ù.


Figure 1.2 - Relationship between stress and strength ÀÀ·Â°ú °­µµÀÇ °ü°è

In design there exist within the structure a number of critical points (eg beam midspans) where the design process is concentrated. The normal distribution curve on the left of Figure 1.2 represents the actual maximum material stresses at these critical points due to the loading. Because loading varies according to occupancy and environmental conditions, and because design is an imperfect process, the material stresses will vary about a modal value - the peak of the curve. Similarly the normal distribution curve on the right represents material strengths at these critical points, which are also not constant due to the variability of manufacturing conditions.

¼³°è¿¡´Â ±¸Á¶¹° ÀÚü¿¡ ¼³°è°úÁ¤ÀÌ ÁýÁߵǾîÁö´Â ¸¹Àº À§ÇèºÎÀ§µé(¿¹ÄÁµ¥, º¸ÀÇ °¡¿îµ¥ ½ºÆÒ)ÀÌ Á¸ÀçÇÑ´Ù. ±×¸² 1.2ÀÇ ¿ÞÂÊ¿¡ ÀÖ´Â Á¤±ÔºÐÆ÷°î¼±Àº ÇÏÁß¿¡ ±âÀÎÇÑ ÀÌ·± À§ÇèºÎÀ§µé¿¡¼­ÀÇ ½ÇÁ¦·Î Àç·á¿¡ »ý±â´Â ÃÖ´ëÀÀ·ÂÀ» ³ªÅ¸³½´Ù. ÇÏÁßÀº »ç¶÷ÀÇ ±¸Á¶¹°¿¡¼­ÀÇ È°µ¿°ú ȯ°æÀû Á¶°Ç¿¡ µû¶ó¼­ º¯Çϸç, ¼³°è¶õ ºÒ¿ÏÀüÇÑ ÇϳªÀÇ °úÁ¤À̱⠶§¹®¿¡, Àç·á¿¡ »ý±â´Â ÀÀ·ÂÀº °î¼±ÀÇ °¡¿îµ¥°¡ ³ôÀº ¸ð´Þ°ªÀ» Áß½ÉÀ¸·Î º¯È­ÇÑ´Ù. ÀÌ¿ÍÀ¯»çÇÏ°Ô ¿À¸¥ÂÊÀÇ Á¤±ÔºÐÆ÷°î¼±Àº ÀÌ·± À§ÇèºÎÀ§µé¿¡¼­ÀÇ Àç·áÀÇ °­µµ¸¦ ³ªÅ¸³»´Âµ¥, Á¦Á¶ Á¶°ÇÀÇ º¯µ¿¼º¿¡ ±âÀÎÇØ ÀÏÁ¤ÇÑ °ªÀ» °®Áö ¾Ê´Â´Ù.

The overlap between the two curves represents a possibility that failure may take place at one of the critical points, as stress due to loading exceeds the strength of the material. In order for the structure to be safe the overlapping area must be kept to a minimum. The degree of overlap between the two curves can be minimised using one of three distinct design philosophies, namely

ÀÌ µÎ °î¼±ÀÌ °ãÄ£ºÎÀ§´Â ±×·± À§ÇèºÎÀ§µé ÁßÀÇ ÇÑ °÷¿¡¼­ Æı«°¡ ÀϾ È®·üÀ» ³ªÅ¸³»´Âµ¥, ÀÌ´Â ÇÏÁßÀ¸·Î ÀÎÇÑ ÀÀ·ÂÀÌ Àç·áÀÇ °­µµº¸´Ù Ŭ °æ¿ì¿¡ ¹ß»ýÇÑ´Ù. ±¸Á¶¹°ÀÌ ¾ÈÀüÇϱâ À§Çؼ­´Â ÀÌ °ãÄ£ ºÎºÐÀÇ ³ÐÀÌ°¡ ÃÖ¼Ò°¡ µÇµµ·Ï À¯ÁöµÇ¾î¾ß¸¸ ÇÑ´Ù. µÎ °î¼± »çÀÌÀÇ °ãÄ£ Á¤µµ´Â ¼¼ °¡ÁöÀÇ ¼­·Î ´Ù¸¥ ¼³°èöÇеé ÁßÀÇ ÇÑ °¡Áö¸¦ »ç¿ëÇÔÀ¸·Î½á ÃÖ¼ÒÈ­µÇ¾îÁú ¼ö ÀÖ´Ù, Áï

(a) permissible stress design Çã¿ëÀÀ·Â¼³°è

(b) load factor method ÇÏÁß°è¼ö¹æ¹ý

(c) limit state design ÇÑ°è»óż³°è


1.2.1 Permissible Stress Design Çã¿ëÀÀ·Â¼³°è

In permissible stress design, sometimes referred to as modular ratio or elastic design, the stresses in the structure at working loads are not allowed to exceed a certain proportion of the yield stress of the construction material, ie. the stress levels are limited to the elastic range. By assuming that the stress-strain relationship over this range is linear, it is possible to calculate the actual stresses in the material concerned. Such an approach formed the basis of the design methods used by CP114 (the forerunner of BS8110), and BS449 (the forerunner of BS5950).

Á¾Á¾ ¸ðµâ·¯ºñ³ª ź¼º¼³°è¶ó°í ºÒ¸®´Â Çã¿ëÀÀ·Â¼³°è¿¡¼­´Â »ç¿ëÇÏÁßÀ» ¹Þ´Â ±¸Á¶¹°ÀÇ ÀÀ·ÂÀÌ ½Ã°øÀç·áÀÇ Ç׺¹ÀÀ·ÂÀÇ ÀÏÁ¤ ºñÀ²Ä¡¸¦ ÃÊ°úÇؼ­´Â ¾ÈµÈ´Ù, Áï ÀÀ·Â ¼öÁØÀÌ Åº¼º¹üÀ§¿¡ Á¦ÇѵȴÙ. ÀÌ·± ¹üÀ§¿¡¼­´Â ÀÀ·Â-º¯Çüµµ °ü°è°¡ ¼±ÇüÀ̶ó°í °¡Á¤ÇÔÀ¸·Î½á, °ü°èµÈ Àç·á¿¡ »ý±â´Â ½ÇÁ¦ ÀÀ·ÂÀ» °è»êÇÏ´Â °ÍÀÌ °¡´ÉÇÏ´Ù. ÀÌ·± Á¢±Ù¹ýÀÌ CP114(BS8110ÀÇ ¼±±¸ÀÚÀûÀÎ ±ÔÁØ)³ª BS449¿¡ ÀÇÇØ »ç¿ëµÈ ¼³°è¹æ¹ýÀÇ ±Ù°£À» ÀÌ·ç¾ú´Ù.

However this philosophy had two major drawbacks. Firstly permissible design methods sometimes tended to over-complicate the design process and also lead to conservative solutions. Secondly, as the quality of materials increased and the safety margins decreased, the assumption that the stress-strain curve was linear became unjustifiable for materials such as concrete, making it impossible to estimate the true factors of safety.

±×·¯³ª ÀÌ·± ¼³°èöÇÐÀº µÎ °¡Áö Áß¿äÇÑ Ãë¾àÁ¡À» °¡Áø´Ù. ¸ÕÀú Çã¿ë¼³°è¹ýÀº Á¾Á¾ ¼³°è°úÁ¤À» Áö³ªÄ¡°Ô º¹ÀâÇÏ°Ô ÇÏ´Â °æÇâÀÌ ÀÖÀ¸¸ç ¶ÇÇÑ ³Ê¹« º¸¼öÀûÀÎ(Áö³ªÄ¡°Ô ¾ÈÀüÃøÀ¸·Î) ÇØ°á¾ÈÀ» ³»³õ´Â °æÇâÀÌ ÀÖ´Ù. ´ÙÀ½À¸·Î´Â Àç·áÀÇ Ç°ÁúÀÌ Çâ»óµÇ°í ¾ÈÀüÀ²ÀÌ ÁÙ¾îµê¿¡ µû¶ó, ÀÀ·Â-º¯Çüµµ °ü°è°¡ Á÷¼±À̶ó´Â °¡Á¤ÀÌ ÄÜÅ©¸®Æ®¿Í °°Àº Àç·á¿¡ À־´Â Á¤´çÈ­µÇÁö ¸øÇÏ°Ô µÊÀ¸·Î½á, ½ÇÁ¦ ¾ÈÀüÀ²À» ÃøÁ¤ÇÏ´Â °ÍÀÌ ºÒ°¡´ÉÇÏ°Ô µÈ´Ù.


1.2.2 Load Factor Design ÇÏÁß°è¼ö¼³°è


Load factor or plastic design was developed to take account of the behaviour of the structure once the yield point of the construction material had been reached. This approach involved calculating the collapse load of the structure. The working load was derived by dividing the collapse load by a load factor.

ÇÏÁß°è¼ö¼³°è ȤÀº ¼Ò¼º¼³°è´Â ½Ã°øÀç·á°¡ Ç׺¹Á¡¿¡ µµ´ÞÇßÀ» ¶§ÀÇ ±¸Á¶¹°ÀÇ °Åµ¿À» °í·ÁÇϱâ À§Çؼ­ °³¹ßµÇ¾ú´Ù. ÀÌ Á¢±Ù¹ýÀº ±¸Á¶¹°ÀÇ Æı«ÇÏÁßÀ» °è»êÇÏ´Â °úÁ¤À» Æ÷ÇÔÇÑ´Ù. »ç¿ëÇÏÁßÀº Æı«ÇÏÁßÀ» ÇÏÁß°è¼ö·Î ³ª´®À¸·Î½á ¾Ë ¼ö ÀÖ´Ù.


This approach simplified methods of analysis and allowed actual factors of safety to be calculated. It was in fact permitted in CP114 and BS449 but was slow in gaining acceptance and was soon superseded by the more comprehensive limit state approach.

ÀÌ Á¢±Ù¹ýÀº Çؼ®¹æ¹ýÀ» °£´ÜÇÏ°Ô ÇßÀ¸¸ç ½ÇÁ¦ÀÇ ¾ÈÀüÀ²À» °è»êÇÏ´Â °ÍÀ» °¡´ÉÄÉ ÇÏ¿´´Ù. ¼Ò¼º¼³°è´Â CP114¿Í BS449¿¡¼­ ½ÇÁ¦·Î Çã¿ëµÇ¾úÀ¸³ª ÀϹÝÀûÀÎ ÀÎÁ¤À» ¾ò´Âµ¥´Â ¾ÆÁ÷ ¹ÌÈíÇÏ¸ç ´õ¿í Á¤±³ÇÑ ±ØÇÑ»óÅ Á¢±Ù¹ý¿¡ ÀÇÇØ °ð ±× ºûÀÌ ¹Ù·¡Á³´Ù.


The difference between these two approaches is illustrated below.

ÀÌ µÎ Á¢±Ù¹ýÀÇ Â÷ÀÌÁ¡ÀÌ ¾Æ·¡¿¡ ¿¹½ÃµÇ¾îÀÖ´Ù.

Example 1.1 - Comparison of Approaches to Design ¼³°èÁ¢±Ù¹ýµéÀÇ ºñ±³

Consider the case of a solid rectangular beam, b wide by d deep, with a span of 10 metres. In example (a) the beam is simply supported, and in example (b) it is built in at each end. Assuming a safety factor of 1.5 calculate the minimum width of beam using permissible stress and load factor approaches.

ÆøÀÌ bÀÌ°í ÃãÀÌ dÀ̸ç, ½ºÆÒÀÌ 10mÀÎ Á÷»ç°¢Çü º¸°¡ 12kN/mÀÇ µîºÐÆ÷ÇÏÁßÀ» ¹Þ°í ÀÖ´Â °æ¿ì¸¦ »ý°¢Çغ¸ÀÚ. ¿¹ÄÁµ¥, (a) º¸´Â ´Ü¼øÁöÁöµÇ¾î ÀÖÀ¸¸ç, (b) º¸ÀÇ ¾ç´Ü¿¡¼­ ÁöÁöµÇ°í ÀÖ´Ù. 1.5ÀÇ ¾ÈÀüÀ²À» °í·ÁÇؼ­ Çã¿ëÀÀ·Â¼³°è¿Í ÇÏÁß°è¼ö¼³°è¸¦ »ç¿ëÇÏ¿© º¸ÀÇ ÃÖ¼ÒÆøÀ» °è»êÇ϶ó.

Figure 1.3 - Simply supported beam ´Ü¼øÁöÁöº¸

Permissible stress approach  Çã¿ëÀÀ·Â¼³°è¹ý
    
  M = W*l*l/8 = 12(kN/m)*10(m)*10(m)/8=150 (kNm)
  S perm = S ult/1.5  
  Elastic beam theory gives ź¼º º¸ÀÌ·ÐÀº ´ÙÀ½°ú °°´Ù.
  Mc = S perm*Z  
  150 = (S ult/1.5)*(bd2/6)
  b   = 1350/(S ult*d2)

  Load factor approach ÇÏÁß°è¼ö¼³°è¹ý

  °è¼öÇÏÁß = 12 x 1.5 = 18 kN/m
  M = W*l*l/8 = 18(kN/m)*10(m)*10(m)/8=225 (kNm)
  Plastic beam theory gives ¼Ò¼º º¸ÀÌ·ÐÀº ´ÙÀ½°ú °°´Ù.
  Mc = S ult*S
  225 = S ult*(bd2/4)  
  b   = 900/(S ult*d2)

  ¿©±â¼­,    
  S perm = Permissible stress Çã¿ëÀÀ·Â;
  S ult = Ultimate or failure stress ±ØÇÑÀÀ·Â ȤÀº Æı«ÀÀ·Â;
  M = Effective bending moment À¯È¿ÈÚ¸ð¸àÆ®;
  Mc = Moment capacity ¸ð¸àÆ® Ä¿ÆнÃƼ;
  S = Plastic section modulus ¼Ò¼º´Ü¸é°è¼ö;
  Z = Elastic section modulus ź¼º´Ü¸é°è¼ö

For the special case of a rectangular beam it can be seen that the permissible stress method gives a relatively conservative solution compared with the load factor method, although the same safety factor is used. However the permissible stress method does model behaviour under working loads, and realistic predictions of behaviour in service can be calculated. The load factor method only models failure, however, and no information on behaviour in service can be obtained.

Á÷»ç°¢Çüº¸ÀÇ Æ¯¼öÇÑ °æ¿ì¿¡´Â ºñ·Ï °°Àº ¾ÈÀüÀ²ÀÌ »ç¿ëµÇ´õ¶óµµ, Çã¿ëÀÀ·Â¼³°è°¡ ÇÏÁß°è¼ö¼³°è¹ý¿¡ ºñÇؼ­ »ó´ëÀûÀ¸·Î º¸¼öÀûÀÎ ÇØ°á¾ÈÀ» »êÃâÇÑ´Ù. ±×·¯³ª Çã¿ëÇÏÁß¼³°è´Â »ç¿ëÇÏÁßÀ» ¹ÞÀ» ¶§ÀÇ °Åµ¿À» ¸ðµ¨È­ÇÑ °ÍÀ̱⠶§¹®¿¡ »ç¿ëÇÏÁßÀ» ¹Þ´Â ±¸Á¶¹°ÀÇ °Åµ¿À» Çö½ÇÀûÀ¸·Î ¿¹ÃøÇÏ¿© °è»êÇÒ ¼ö ÀÖ´Ù. ±×·¯³ª ÇÏÁß°è¼ö¼³°è´Â ´ÜÁö Æı«¸¦ ¸ðµ¨È­ÇÑ °ÍÀ̱⠶§¹®¿¡ »ç¿ëÇÏÁßÀ» ¹ÞÀ» ¶§ÀÇ °Åµ¿¿¡ ´ëÇؼ­´Â ¾Æ¹«·± Á¤º¸µµ ÁÖÁö ¸øÇÑ´Ù.


1.2.3 Limit state design ÇÑ°è»óż³°è


Originally formulated in Russia in the 1930's and developed in Europe in the 1960's, limit state design can perhaps be seen as a compromise between the permissible stress and load factor methods. It is in fact a more comprehensive approach which takes into account both methods in appropriate ways. Most modern structural codes of practice are now based on a limit state approach. BS8110 for concrete, BS5950 for structural steelwork, BS5400 for bridges, and BS5628 for masonry are all limit state codes. The principal exceptions are the code of practice for design in timber, BS5268, and the old (but still current) structural steelwork code, BS449, both of which are permissible stress codes.

1930³â´ë¿¡ ·¯½Ã¾Æ¿¡¼­ ÃÖÃÊ·Î °í¾ÈµÇ¾úÀ¸¸ç 1960³â´ë¿¡ À¯·´¿¡¼­ ¹ßÀüµÈ ÇÑ°è»óż³°è´Â Çã¿ëÀÀ·Â¼³°è¿Í ÇÏÁß°è¼ö¼³°è »çÀÌÀÇ ÀÏÁ¾ÀÇ Å¸ÇùÁ¡À¸·Î º¼ ¼ö ÀÖ´Ù. »ç½Ç ÇÑ°è»óż³°è´Â Àû´çÇÑ ¹æ½ÄÀ¸·Î µÎ °¡Áö ¼³°è¹ýÀ» ¸ðµÎ °í·ÁÇÑ Á»´õ ¼¼·ÃµÈ Á¢±Ù¹ýÀÌ´Ù. ÇöÀç »ç¿ëµÇ°í ÀÖ´Â ´ëºÎºÐÀÇ ±¸Á¶¼³°è±ÔÁصéÀº ±ØÇÑ»óż³°è¿¡ ±âÃʸ¦ µÎ°í ÀÖ´Ù. ÄÜÅ©¸®Æ®¿¡ ´ëÇؼ­´Â BS8110, ö°ñ¿¡ ´ëÇؼ­´Â BS5950, ±³·®¿¡ ´ëÇؼ­´Â BS5400, Á¶ÀûÁ¶¿¡ ´ëÇؼ­´Â BS5628ÀÌ »ç¿ëµÇ°í Àִµ¥ À̵éÀÌ ¸ðµÎ ±ØÇÑ»óż³°è¿¡ ±Ù°ÅÇÑ ±ÔÁصéÀÌ´Ù. ¸ñ±¸Á¶ ¼³°è±ÔÁØÀ¸·Î »ç¿ëµÇ´Â BS5268¿Í ö°ñÁ¶¿¡ »ç¿ëµÇ´Â BS449¿¡´Â ¿¹¿ÜÀûÀ¸·Î ÇÑ°è»óż³°è°¡ Àû¿ëµÇÁö ¾Ê°í Çã¿ëÀÀ·Â¼³°è¿¡ ±Ù°ÅÇÑ ±ÔÁØÀÌ »ç¿ëµÈ´Ù.


Two limit states are examined. µÎ °³ÀÇ ÇÑ°è»óÅ´ ´ÙÀ½°ú °°´Ù.

(a) Ultimate limit state ±ØÇÑÇÑ°è»óÅÂ

Similar to load factor design, failure of the structure is "modelled" with appropriate safety factors on loading. In addition partial safety factors are also applied to material strengths. The ultimate limit state is concerned with the maximum load-carrying capacity of the structure and plastic analysis methods are appropriate, if they can be applied.

ÇÏÁß°è¼ö¼³°è¿Í À¯»çÇÏ°Ô ±¸Á¶¹°ÀÇ Æı«´Â ÇÏÁß¿¡ ´ëÇÑ ÀûÀýÇÑ ¾ÈÀüÀ²À» °¡Áö°í ¸ðµ¨È­µÈ´Ù. ¶ÇÇÑ ºÎºÐÀûÀÎ ¾ÈÀüÀ²ÀÌ Àç·áÀÇ °­µµ¿¡µµ Àû¿ëµÈ´Ù. ±ØÇÑÇÑ°è»óÅ´ ±¸Á¶¹°ÀÇ ÃÖ´ë ÇÏÁßÁöÁö´É·Â°ú °ü°èµÇ¸ç ¼Ò¼ºÇؼ®¹ýÀÌ Àû¿ëµÉ ¼ö ÀÖ´Ù¸é ÀûÀýÇÏ´Ù.

(b) Serviceability limit state »ç¿ë¼ºÇÑ°è»óÅÂ

The serviceability limit state is concerned with certain aspects of the structure at working loads, in particular deflection and cracking. Normally behaviour of members at serviceability limit state is elastic.

»ç¿ë¼ºÇÑ°è»óÅ´ »ç¿ëÇÏÁßÀ» ¹Þ´Â ±¸Á¶¹°ÀÇ Æ¯¼º¿¡ °ü°èµÇ´Âµ¥, ƯÈ÷ ÈÚÀ̳ª ±Õ¿­ÀÌ »ý±â´Â °æ¿ì°¡ ±×·¸´Ù. ÀϹÝÀûÀ¸·Î »ç¿ë¼ºÇÑ°è»óÅ¿¡ ÀÖ´Â ºÎÀçÀÇ °Åµ¿Àº ź¼ºÀÌ´Ù.

As this approach forms the basis of the design methods in most modern codes of practice for structural design, it is essential that the design methodology is fully understood.

ÀÌ·± Á¢±Ù¹ýÀº ±¸Á¶¼³°è¿¡ ´ëÇÑ ´ëºÎºÐÀÇ Çö´ëÀûÀÎ ½ÇÁ¦ ±ÔÁصéÀÇ ±Ù°£À» ÀÌ·ç±â ¶§¹®¿¡, ¼³°è¹æ¹ý·Ð¿¡ ´ëÇÑ ¿Ïº®ÇÑ ÀÌÇØ´Â ÇʼöºÒ°¡°áÇÏ´Ù.


1.2.3.1 Characteristic and design values Ư¼º°ú ¼³°è°ªµé


As stated at the outset, when checking whether a particular member is safe, the designer cannot be certain about either the strength of the material composing the member or, indeed, the load which the member must carry. The material strength may be less than intended
À§¿¡¼­ °³·«ÀûÀ¸·Î ¸»ÇßµíÀÌ, ¾î¶² ºÎÀç°¡ ¾ÈÀüÇÑÁö¸¦ È®ÀÎÇÒ ¶§, ¼³°èÀÚ´Â ºÎÀ縦 ±¸¼ºÇÏ´Â Àç·áÀÇ °­µµ¿Í ½ÇÁ¦ ºÎÀç°¡ ÁöÁöÇÏ´Â ÇÏÁßÀÇ ±× ¾î´À °Í¿¡ ´ëÇؼ­µµ È®½ÅÀ» ÇÒ ¼ö°¡ ¾ø´Ù. Àç·á°­µµ´Â ¿¹»óÇß´ø °Íº¸´Ù ÀÛÀ» ¼öµµ Àִµ¥,

(a) because of it's variable composition, and
(a) Àç·á ±¸¼º»óÀÇ º¯µ¿¼º ¶§¹®¿¡ ±×·¯Çϸç,

(b) because of the variability of manufacturing conditions during construction, and other effects such as corrosion.
(b) ½Ã°øÇÏ´Â µ¿¾È Á¦Á¶Á¶°ÇÀÇ º¯µ¿¼º°ú ºÎ½Ä°ú °°Àº ´Ù¸¥ ¿äÀÎµé ¶§¹®¿¡ ±×·¯ÇÏ´Ù.

Similarly the load in the member may be greater than anticipated
¸¶Âù°¡Áö·Î ºÎÀç°¡ ÁöÁöÇÏ´Â ÇÏÁßµµ ¿¹ÃøÇß´ø °Íº¸´Ù ´õ Ŭ ¼ö°¡ Àִµ¥,

(a) because of the variability of the occupancy or environmental loading, and
(a) »ç¿ëÀÚÀÇ °ÅÁÖ»óÅÂ¿Í ÁÖÀ§ ÇÏÁßÀÇ º¯µ¿¼º ¶§¹®¿¡ ±×·¯Çϸç,

(b) because of unforeseen circumstances which may lead to an increase in the general level of loading, errors in the analysis, errors during construction etc.
(b) ÀϹÝÀû ¼öÁØÀÇ ÇÏÁßÀ» ÃÊ°úÇÒ ¼ö ÀÖ´Â ¿¹ÃøÄ¡ ¸øÇÑ È¯°æ¿äÀÎ, Çؼ®»óÀÇ ½Ç¼ö, ½Ã°øÁßÀÇ ¿ÀÂ÷ µî ¶§¹®¿¡ ±×·¯ÇÏ´Ù.

In each case, item (a) is allowed for by using a characteristic value. The characteristic strength is the value below which the strength lies in only a small number of cases. Similarly the characteristic load is the value above which the load lies in only a small percentage of cases. In the case of strength the characteristic value is determined from test results using statistical principles, and is normally defined as the value below which not more than 5% of the test results fall. However, at this stage there is insufficient data available to apply statistical principles to loads. Therefore the characteristic loads are normally taken to be the design loads from previous codes of practice.

°¢°¢ÀÇ °æ¿ì¿¡, (a) »çÇ×Àº Ư¼ºÄ¡¸¦ »ç¿ëÇÔÀ¸·Î½á °í·ÁµÉ ¼ö ÀÖ´Ù. ÀϹÝÀûÀ¸·Î °­µµ´Â ¸Å¿ì ÀûÀº °æ¿ì¿¡ Ư¼º°­µµº¸´Ù ÀÛ°Ô µÈ´Ù. ¸¶Âù°¡Áö·Î ÀϹÝÀûÀ¸·Î ÇÏÁßÀº ¸Å¿ì ÀûÀº È®·üÀ» °¡Áö°í¼­ Ư¼ºÇÏÁߺ¸´Ù Å©°Ô µÈ´Ù. °­µµÀÇ °æ¿ì¿¡ Ư¼ºÄ¡´Â Åë°èÇÐÀûÀÎ ¿ø¸®¸¦ ÀÌ¿ëÇÑ ½ÇÇè°á°ú·ÎºÎÅÍ °áÁ¤ÀÌ µÇ¸ç, ÀϹÝÀûÀ¸·Î ½ÇÇè°á°úÄ¡°¡ Ư¼ºÄ¡º¸´Ù ³·Àº È®·üÀÌ 5%º¸´Ù ³·°Ô µÈ´Ù. ±×·¯³ª ÀÌ ´Ü°è¿¡¼­ Åë°èÇÐÀûÀÎ ¿ø¸®¸¦ ÇÏÁß¿¡ Àû¿ëÇϱ⿡ ºÒÃæºÐÇÑ Á¡ÀÌ ÀÖ´Ù. µû¶ó¼­ Ư¼ºÇÏÁßÀº ÀϹÝÀûÀ¸·Î ÀÌÀü ±ÔÁص鿡¼­ »ç¿ëµÈ ¼³°èÇÏÁßÀ» ÃëÇÑ´Ù.


Thus the characteristic dead load (Gk), which represents the weight of the structure including finishes, fixtures and partitions, can be estimated using BS648: Schedule of Weights for Building Materials and BS6399: Design Loads for Buildings, Part 1: Code of Practice for Dead and Imposed Loads. Similarly typical design values of the characteristic imposed load (Qk), which represents the load due to the proposed occupancy, are given in BS6399. The characteristic wind loads (Wk) are obtained using BS6399 Part 3, formerly CP3: Chapter 5: Part 2.

µû¶ó¼­ ¸¶°¨Àç, º®Ã¼ºÎÂø¹°, ºñ³»·Âº®À» Æ÷ÇÔÇÏ´Â ±¸Á¶¹°ÀÇ ¹«°Ô¸¦ ³ªÅ¸³»´Â Ư¼º°íÁ¤ÇÏÁßÀº ´ÙÀ½ÀÇ ±ÔÁصéÀ» ÀÌ¿ëÇؼ­ ÃßÁ¤ÇÒ ¼ö ÀÖ´Ù : BS648: Schedule of Weights for Building Materials and BS6399: Design Loads for Buildings, Part 1: Code of Practice for Dead and Imposed Loads. ¸¶Âù°¡Áö·Î, °¡Á¤ÇÑ °ÅÁÖ¼º¿¡ ±âÀÎÇÑ ÇÏÁßÀ» ³ªÅ¸³»´Â Ư¼ºÄ¡¸¦ Æ÷ÇÔÇÑ ÇÏÁßÀÇ ¼³°èÄ¡´Â BS6399¿¡¼­ ±¸ÇÒ ¼ö ÀÖ´Ù. Ư¼ºÇ³ÇÏÁßÀº ´ÙÀ½ ±ÔÁØÀ» ÀÌ¿ëÇؼ­ ±¸ÇÒ ¼ö ÀÖ´Ù : BS6399 Part 3, formerly CP3: Chapter 5: Part 2


The overall effect of items under (a) and (b) is allowed for using a partial safety factor, gm for strength, gf for load. The design strength is obtained by dividing the characteristic strength by the partial safety factor for strength

(a)¿Í (b)¿¡ ÇØ´çÇÏ´Â Ç׸ñµéÀÇ ÀüüÀûÀÎ ¿µÇâÀº ºÎºÐ¾ÈÀüÀ²À» »ç¿ëÇÔÀ¸·Î½á °í·ÁÇÒ ¼ö ÀÖ´Ù. °­µµ¿¡ ´ëÇؼ­´Â gmÀ», ÇÏÁß¿¡ ´ëÇؼ­´Â gf¸¦ »ç¿ëÇÑ´Ù. ¼³°è°­µµ´Â Ư¼º°­µµ¸¦ °­µµ¿¡ ´ëÇÑ ºÎºÐ¾ÈÀüÀ²gm·Î ³ª´®À¸·Î½á ¾ò¾îÁú ¼ö ÀÖ´Ù.

ie design strength = characteristic strength/gm
¼³°è°­µµ = Ư¼º°­µµ/ºÎºÐ¾ÈÀüÀ²

The choice of values for gm depend on the material being considered. For instance, the strength of in-situ concrete is more likely to be affected by the nature of the construction process than the strength of the reinforcing steel. This is accounted for in limit state design by assigning a higher factor of safety to concrete (1.5) than reinforcing steel (1.15).

°­µµ¿¡ ´ëÇÑ ºÎºÐ¾ÈÀüÀ² gmÀÇ °ªÀ» ¼±ÅÃÇÏ´Â °ÍÀº °í·ÁµÇ´Â Àç·á¿¡ ´Þ·ÁÀÖ´Ù. ¿¹ÄÁµ¥, ÇöÀ埼³ ÄÜÅ©¸®Æ®ÀÇ °­µµ´Â ö±ÙÀÇ °­µµº¸´Ù ½Ã°ø°úÁ¤ÀÇ ¼º°Ý¿¡ ÀÇÇØ ´õ Å« ¿µÇâÀ» ¹Þ±â ¸¶·ÃÀÌ´Ù. ÇÑ°è»óż³°è¿¡¼­´Â ÀÌ·± Çö»óÀ» ö±Ù¿¡ »ç¿ëµÇ´Â 1.15ÀÇ ¾ÈÀüÀ²º¸´Ù ÄÜÅ©¸®Æ®¿¡¼­ ´õ Å« 1.5¶õ ¾ÈÀüÀ²À» »ç¿ëÇÔÀ¸·Î¼­ ÇØ°áÇÑ´Ù.


The design load is obtained by multiplying the characteristic load by the partial safety factor for load

¼³°èÇÏÁßÀº Ư¼º°­µµ¿¡ ÇÏÁß¿¡ ´ëÇÑ ºÎºÐ¾ÈÀüÀ²À» °öÇÔÀ¸·Î½á ¾òÀ» ¼ö ÀÖ´Ù.

ie design load = characteristic load x gf
¼³°èÇÏÁß = Ư¼ºÇÏÁß x ºÎºÐ¾ÈÀüÀ²

The value for gf depends on several factors including the limit state under consideration and the accuracy of predicting the loads on the structure. For instance, at the ultimate limit state dead loads are multiplied by 1.4 and imposed loads by 1.6. However at the serviceability limit state these factors reduce to 1.0.

ÇÏÁß¿¡ ´ëÇÑ ºÎºÐ¾ÈÀüÀ²ÀÇ °ªÀº °í·ÁÇÏ´Â ÇÑ°è»óÅÂ¿Í ±¸Á¶¹°¿¡ ÀÛ¿ëÇÏ´Â ÇÏÁß¿¹ÃøÀÇ Á¤È®¼ºÀ» Æ÷ÇÔÇÏ´Â ¿©·¯ ¿äÀε鿡 ±Ù°ÅÇØ °áÁ¤µÈ´Ù. ¿¹ÄÁµ¥, ±ØÇÑÇÑ°è»óÅ¿¡¼­´Â °íÁ¤ÇÏÁßÀº 1.4¶õ ºÎºÐ¾ÈÀüÀ²À» °öÇÏ°í À̵¿ÇÏÁß¿¡ ´ëÇؼ­´Â 1.6À» °öÇÑ´Ù. ±×·¯³ª »ç¿ë¼º ±ØÇÑ »óÅ¿¡¼­´Â ÀÌ °ªµéÀÌ ¸ðµÎ 1.0ÀÌ µÈ´Ù.


In general, once a preliminary assessment of the design loads has been made it is then possible to calculate the maximum bending moments, shear forces and deflections in the structure.

ÀϹÝÀûÀ¸·Î ÀÏ´Ü ¼³°èÇÏÁß¿¡ ´ëÇÑ Ãʱâ Æò°¡°¡ ÀÌ·ç¾îÁö¸é, ±¸Á¶¹°ÀÇ ÃÖ´ë ÈÚ¸ð¸àÆ®¿Í Àü´Ü·Â, ±×¸®°í ÈÚÀ» °è»êÇÏ´Â °ÍÀÌ °¡´ÉÇÏ´Ù.


The construction material must be capable of withstanding these forces otherwise failure of the structure may occur. Simplified procedures for calculating the moment, shear and axial capacities of the members together with acceptable deflection limits are described in the appropriate codes of practice. These allow the designer to rapidly assess the suitability of the proposed elements of structure. The aim of the following lectures then is to discuss these procedures in respect of reinforced concrete, steelwork masonry and timber structures.

½Ã°øÀç·á´Â ÀÌ·± ÈûµéÀ» ÁöÅÊÇÒ ¼ö ÀÖ¾î¾ß¸¸ ÇÏ¸ç ±×·¸Áö ¾ÊÀ» °æ¿ì ±¸Á¶¹°Àº Æı«µÈ´Ù. ¼ö¿ëÇÒ ¸¸ÇÑ ÈÚÇÑ°èÄ¡¸¦ ¸¸Á·½ÃÅ°¸é¼­ ºÎÀçÀÇ ¸ð¸àÆ®, Àü´Ü·Â, ±×¸®°í Ãà·ÂÀ» °è»êÇÏ´Â ´Ü¼øÈ­µÈ °úÁ¤Àº ÀûÀýÇÑ ±ÔÁØÀ» ã¾Æº¸¸é ±â¼úµÇ¾î ÀÖ´Ù. ÀÌ´Â ¼³°èÀÚ·Î ÇÏ¿©±Ý Á¦¾ÈµÈ ±¸Á¶¹° ºÎÀçÀÇ ÀûÇÕ¼ºÀ» »¡¸® Æò°¡ÇÒ ¼ö ÀÖµµ·Ï ÇØÁØ´Ù. ´ÙÀ½¿¡ ÀÌ·¯Áö´Â °­ÀÇÀÇ ¸ñÀûÀº ÀÌ·± °úÁ¤µéÀ» ö±ÙÄÜÅ©¸®Æ®, ö°ñÁ¶, Á¶ÀûÁ¶, ±×¸®°í ¸ñÁ¶ÀÇ Ãø¸é¿¡¼­ ÅäÀÇÇÏ´Â °ÍÀÌ´Ù.

¿ø¹®º¸±â